Abstract

AbstractIdentification of arsenic‐binding proteins is important for understanding arsenic health effects and for developing arsenic‐based therapeutics. We report here a strategy for the capture and identification of arsenic‐binding proteins in living cells. We designed an azide‐labeled arsenical, p‐azidophenylarsenoxide (PAzPAO), to serve bio‐orthogonal functions: the trivalent arsenical group binds to cellular proteins in situ, and the azide group facilitates click chemistry with dibenzylcyclooctyne. The selective and efficient capture of arsenic‐binding proteins enables subsequent enrichment and identification by shotgun proteomics. Applications of the technique are demonstrated using the A549 human lung carcinoma cells and two in vitro model systems. The technique enables the capture and identification of 48 arsenic‐binding proteins in A549 cells incubated with PAzPAO. Among the identified proteins are a series of antioxidant proteins (e.g., thioredoxin, peroxiredoxin, peroxide reductase, glutathione reductase, and protein disulfide isomerase) and glyceraldehyde‐3‐phosphate dehydrogenase. Identification of these functional proteins, along with studies of arsenic binding and enzymatic inhibition, points to these proteins as potential molecular targets that play important roles in arsenic‐induced health effects and in cancer treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.