Abstract

Inactivation of Cryptosporidium parvum oocysts by ozone was performed in ozone demand-free 0.05 M phosphate buffer (pH 6.9) in bench-scale batch reactors at 7 and 22 degrees C. Ozone was added to each trial from a concentrated stock solution for contact times ranging from 5 to 15 min. The viability of the control and treated oocysts was determined by using in vitro excystation and infection in neonatal CD-1 mice. It was found that excystation consistently underestimated inactivation when compared with animal infectivity (P < or = 0.05). As inactivations increased, the difference between excystation and infectivity also increased. The inactivation kinetics of C. parvum by ozone deviated from the simple first-order Chick-Watson model and was better described by a nonlinear Hom model. The use of the Hom model for predicting inactivation resulted in a family of unique concentration and time values for each inactivation level rather than the simple CT product of the Chick-Watson model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.