Abstract

This study focuses on the effect of experimental parameters on the removal of ranitidine (RAN) during ozonation and the identification of the formed transformation products (TPs). The influence of pH value, the initial concentrations, the inorganic and the organic matter on RAN's removal were evaluated. Results indicated high reactivity of RAN with molecular aqueous ozone. Initial ozone concentration and pH were proven the major process parameters. Alkaline pH values promoted degradation and overall mineralization. Dissolved organic matter reacts competitively to RAN with the oxidants (ozone and/or radicals), influencing the target compound's removal. The presence of inorganic ions in the matrix did not seem to affect RAN ozonation. A total of eleven TPs were identified and structurally elucidated, with the complementary use of both Reversed Phase (RP) and Hydrophilic Interaction Liquid Chromatography (HILIC) quadrupole time of flight tandem mass spectrometry (Q-ToF-MS/MS). Most of the TPs (TP-304, TP-315b, TP-299b, TP-333, TP-283) were generated by the attack of ozone at the double bond or the adjacent secondary amine, with the abstraction of NO2 moiety, forming TPs with an aldehyde group and an imine bond. Oxidized derivatives with a carboxylic group (TP-315a, TP-331a, TP-331b, TP-299a) were also formed. RAN S-oxide was identified as an ozonation TP (TP-330) and its structure was confirmed through the analysis of a reference standard. TP-214 was also produced during ozonation, through the CN bond rupture adjacent to the NO2 moiety. HILIC was used complementary to RP, either for the separation and identification of TPs with isomeric structures that may have been co-eluted in RPLC or for the detection of new TPs that were not eluted in the RP chromatographic system. Retention time prediction was used as a supporting tool for the identification of TPs and results were in accordance with the experimental ones in both RP and HILIC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call