Abstract

The occurrence of cyanobacteria (blue–green algae) blooms and the possibility of production of cyanotoxins (algal toxins) have become major concerns for drinking water providers worldwide. Ozone has been shown to be effective for the destruction of some classes of toxins under specific conditions, although most researchers agree that the dose and contact time required will depend on water quality. The clarification of the relative effects of water quality parameters such as dissolved organic carbon concentration and character, and alkalinity, has not been previously attempted. In this study the cyanotoxins microcystin LR and LA and anatoxin-a were ozonated at a range of ozone doses in four treated waters with very different water quality. For both the toxins, 100% destruction was related to a residual ozone concentration present after 5 min. This was, in turn, related to the water quality and indicated that a direct reaction with molecular ozone could be responsible for the destruction. The results confirmed that both the toxins would be destroyed under conditions usually utilised for ozonation prior to granular activated carbon (GAC) filtration. This will apply under a range of water quality conditions but not necessarily a range of temperatures. The saxitoxin class of compounds was very resistant to oxidation by ozone and would require further treatment such as GAC filtration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call