Abstract

Ozonation of biologically pretreated pulp mill wastewaters was studied using both bench and pilot scale fine bubble contactors to determine the oxidation efficiencies, mass transfer coefficients (kLa) and enhancement factors (E) due to the occurrence of chemical reactions. A sensitivity analysis based on the measured process parameters was then used to reveal the interrelated effects of key factors on off-gas ozone concentrations. It was shown that the removal efficiencies of color and AOX were simply related to the amount of utilized ozone, regardless of variation of other operating conditions. Furthermore, the rate of absorption fell within the fast or instantaneous kinetics regimes due to the occurrence of rapid chemical reactions. The EkLa values were found to vary substantially during the course of ozonation, indicating that the enhancement factors were not only affected not only by operating conditions but also by wastewater characteristics. To effectively control the off-gas ozone emission, measures should be taken to minimize the backmixing, use a counter-current flow arrangement and provide adequate contact time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.