Abstract

The cardioprotective effect of oxytocin (OT) has been well established. However, there are no related studies on the role of endothelia in oxytocin-induced cardioprotection. Endothelial dysfunction (ED) model was established by injection of 0.01 % Triton X-100 in the isolated rat heart. Oxytocin pretreatment was conducted at the end of stabilization for 40 min, followed by 30 min global ischemia and 60 min reperfusion to induce I/R injury. Coronary perfusion pressure, hemodynamics and arrhythmia severity scores were measured respectively. High-sensitivity cardiac troponin T (hs-cTnT) was evaluated by enzyme-linked immunosorbent assay. Infarct size was detected by triphenyltetrazolium chloride staining. The morphological changes in coronary endothelium were observed by scanning electron microscopy. Injection of 0.01 % Triton X-100 caused significant reduction of CPP induced by histamine and endothelium removal from scanning electron microscopy, but SNP had no significant effect. Oxytocin pretreatment showed significant recovery in LVDP, ±dp/dtmax, RPP and SI after reperfusion (P < 0.05). Additionally, I/R injury led to a rise of arrhythmia severity score, hs-cTnT and infarct size. No significant differences between ED-OT-I/R and OT-I/R groups were found in arrhythmia severity score, hs-cTnT, and infarct size (P > 0.05). I/R injury exacerbated the decrease in CPP and worsened the migration, deformation, and fracture of coronary endothelium, while oxytocin reversed these injuries. Despite the presence of endothelial damages, oxytocin partially alleviated I/R- and Triton-induced endothelial damages. The cardioprotective effects of oxytocin are independent of endothelial function in alleviating I/R injury and I/R-induced coronary endothelial dysfunction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call