Abstract

Numerous studies in animals and humans have established that oxytocin (OT) reduces anxiety. In rats, the prelimbic (PL) subregion of the medial prefrontal cortex (mPFC) is among the brain areas implicated in the anxiolytic actions of OT. However, questions remain about the anatomical and receptor specificity of OT and its mechanism of action. Here we assessed whether the regulation of anxiety by mPFC OT is restricted to the PL subregion and evaluated whether oxytocin receptor (OTR) activation is required for OT to have an anxiolytic effect. We also examined whether OT interacts with GABA in the mPFC to reduce anxiety and investigated the extent to which OT in the mPFC affects activation of mPFC GABA neurons as well as neuronal activation in the amygdala, a primary target of the mPFC which is part of the neural network regulating anxiety. We found that OT reduced anxiety-like behavior when delivered to the PL, but not infralimbic or anterior cingulate subregions of the mPFC. The anxiolytic effect of OT in the PL mPFC was blocked by pretreatment with an OTR, but not a vasopressin receptor, antagonist as well as with a GABAA receptor antagonist. Lastly, administration of OT to the PL mPFC was accompanied by increased activation of GABA neurons in the PL mPFC and altered neuronal activation of the amygdala following anxiety testing. These results demonstrate that OT in the PL mPFC attenuates anxiety-related behavior and may do so by engaging GABAergic neurons which ultimately modulate downstream brain regions implicated in anxiety.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call