Abstract
Oxytocin is an essential hormone for mammalian labor and lactation. Here, we show a new function of oxytocin in causing plastic changes in hippocampal synapses during motherhood. In oxytocin-perfused hippocampal slices, one-train tetanus stimulation induced long-lasting, long-term potentiation (L-LTP) and phosphorylation of cyclic AMP-responsive element binding protein (CREB), and MAP kinase inhibitors blocked these inductions. An increase in CREB phosphorylation and L-LTP induced by one-train tetanus were observed in the multiparous mouse hippocampus without oxytocin application. Furthermore, intracerebroventricular injection of oxytocin in virgin mice improved long-term spatial learning in vivo, whereas an injection of oxytocin antagonist in multiparous mice significantly inhibited the improved spatial memory, L-LTP and CREB phosphorylation. These findings indicate that oxytocin is critically involved in improving hippocampus-dependent learning and memory during motherhood in mice.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have