Abstract
BackgroundSepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction, characterized by cognitive and memory impairments closely linked to hippocampal dysfunction. Though it is well-known that SAE is a diffuse brain dysfunction with microglial activation, the pathological mechanisms of SAE are not well established and effective clinical interventions are lacking. Oxytocin (OXT) is reported to have anti-inflammatory and neuroprotective roles. However, the effects of OXT on SAE and the underlying mechanisms are not clear. MethodsSAE was induced in adult C57BL/6J male mice by cecal ligation and perforation (CLP) surgery. Exogenous OXT was intranasally applied after surgery. Clinical score, survivor rate, cognitive and memory behaviors, and hippocampal neuronal and non-neuronal functions were evaluated. Cultured microglia challenged with lipopolysaccharide (LPS) were used to investigate the effects of OXT on microglial functions, including inflammatory cytokines release and phagocytosis. The possible intracellular signal pathways involved in the OXT-induced neuroprotection were explored with RNA sequencing. ResultsHippocampal OXT level decreases, while the expression of OXT receptor (OXTR) increases around 24 h after CLP surgery. Intranasal OXT application at a proper dose increases mouse survival rate, alleviates cognitive and memory dysfunction, and restores hippocampal synaptic function and neuronal activity via OXTR in the SAE model. Intraperitoneal or local administration of the OXTR antagonist L-368,899 in hippocampal CA1 region inhibited the protective effects of OXT. Moreover, during the early stages of sepsis, hippocampal microglia are activated, while OXT application reduces microglial phagocytosis and the release of inflammatory cytokines, thereby exerting a neuroprotective effect. OXT may improve the SAE outcomes via the OXTR-ERK-STAT3 signaling pathway. ConclusionOur study uncovers the dysfunction of the OXT signal in SAE and shows that intranasal OXT application at a proper dose can alleviate SAE outcomes by reducing microglial overactivation, suggests that OXT may be a promising therapeutic approach in managing SAE patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.