Abstract

Studies of electron energy loss spectroscopy and selected area electron diffraction (SAED) were systematically performed on 15 and 25 at. % lanthanide (Ln)-doped ceria samples (Ln=Sm, Gd, Dy, and Yb), through which the local ordering of oxygen vacancies that develops with increase in doping level was confirmed in the sequence of (Gd,Sm)>Dy>Yb. Furthermore, a monotone correlation between the development of the ordering and the degradation of ionic conductivity with increasing the doping concentration from 15 to 25 at. % was observed. Based on the analysis of SAED patterns, a structural model for the ordering of oxygen vacancies has been constructed, in which the arrangement of oxygen vacancies is similar to that in C-type Ln2O3 oxides and the 110 pairs of the vacancies are preferred. Then, the factors that can influence the formation of the ordering are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.