Abstract

Bismuth-based materials are extensively studied for photocatalytic applications because of their unique crystal structure. Herein, we reported a binary graphene oxide (GO)/BiOCl composite material prepared by a hydrothermal method and analyzed its photodegradation mechanism through the semiconductor energy band theory. The degradation rate of the GO/BiOCl composite towards Rhodamine B could reach 93.6% within 8 min, and its performance exceeded that of most photocatalysts. The influencing factors for improving the photocatalytic activity are as follows: (1) abundant oxygen vacancies generated on the tight recombination interface; (2) a 2D-2D electron transfer channel between GO and BiOCl; and (3) GO acting as a load to provide more reaction sites for BiOCl nanosheets. This work provides a simple solution and theoretical explanation for the rapid degradation of pollutants, and has broad application prospects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call