Abstract

A conventional solvothermal way was used to synthesize graphene oxide (GO)/BiOCl photocatalytic nanomaterials with enhanced photocatalytic performance. Due to the introduction of GO, there are intuitive changes in morphology, indicating that GO can guide the growth of GO/BiOCl catalysts. The results of X-ray photoelectron spectroscopy (XPS) and Raman show that a strong chemical interaction occurs around GO and BiOCl. The results of trapping experiments show that O2– is the major active species. XPS analysis confirms that the 0.75% GO/BiOCl produces the highest level of oxygen vacancies (OVs). All the GO/BiOCl photocatalysts possess better photocatalytic properties than the neat BiOCl, and 0.5% GO/BiOCl exhibits the highest photoactivity. The photocatalytic activity of 0.5% GO/BiOCl composite for detoxification of rhodamine B (RhB) and tetracycline (TC) under visible light illumination is 4.6 and 6.3 times of that on the reference BiOCl, separately, the photocatalytic activity of 0.5% GO/BiOCl for detoxication of perfluorooctanoic acid (PFOA) is 1.25 times of that of the single BiOCl under UV light illumination, which can be credited to the high separation rate of carriers and the strong interaction between GO and BiOCl. Combining with the results, a separation and transfer mechanism of carriers was revealed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call