Abstract
The electrochemical stability and activity of different compositions of titanium and tantalum oxy-nitride nano-catalysts were investigated for the oxygen reduction reaction (ORR). A new sol-gel method was used to produce a nano-powder mixture of Ti and Ta oxynitride from their alkoxides using urea as a nitrogen source. The precursors prepared by the sol-gel method were annealed in a N2 + 3% H2 atmosphere at determined temperatures (500, 700 and 900 °C) inside a silica tube furnace. X-ray diffraction results proved that by using this method a considerable amount of nitrogen was inserted into the catalyst structure at a relatively low temperature. Energy dispersive spectroscopy showed that the prepared catalyst should be oxidized carbonitride of titanium and/or tantalum. Heat treatment had a major effect on the onset potential by changing the crystallinity of the catalyst, so that the onset potential of titanium oxynitride increased from ca. 0.05 V to 0.65 V vs. NHE by increasing the temperature from 500 to 700 °C. Increasing the Ta concentration also led to a higher onset potential but lower ORR current. For instance, the onset potential for the ORR for tantalum oxynitride heat treated at 700 °C was ca. 0.85 V vs. NHE while this value was ca. 0.65 V vs. NHE for titanium oxynitride. However, the ORR current was 100 times smaller in tantalum oxynitride, most likely because of a low electrochemically active surface area. Electrochemical measurements suggested that an appropriate composition of titanium and tantalum was required to have both a good onset potential and ORR current by improving the catalytic activity and increasing the active surface area and electrical conductivity.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have