Abstract

Renal insufficiency continues to be complication that can affect patients after treatment for suprarenal aneurysms and renal artery occlusive disease. One proposed mechanism of renal injury after suprarenal aortic clamping (above the superior mesenteric artery) and reperfusion (SMA-SRACR) is the loss of microvascular renal blood flow with subsequent loss of renal function. This study examines the hypothesis that the loss of medullary and cortical microvascular blood flow following SMA-SRACR is due to oxygen-derived free radical down-regulation of endogenous medullary and cortical nitric oxide synthesis. Anesthetized male Sprague-Dawley rats (about 350 g) either had microdialysis probes or laser Doppler fibers inserted into the renal cortex (depth of 2 mm) and into the renal medulla (depth of 4 mm). Laser Doppler blood flow was continuously monitored. The microdialysis probes were connected to a syringe pump and perfused in vivo at 3 microL/min with lactated Ringer's solution. The animals were subjected to SMA-SRACR (or sham) for 30 minutes, followed by 60 minutes of reperfusion. Laser Doppler blood flow after the 30 minutes of SMA-SRACR followed by 60 minutes of reperfusion was compared with the time zero (basal) and with the corresponding sham group and reported as percent change compared with the time zero baseline. The microdialysis fluid was collected at time zero (basal) and compared with the dialysis fluid collected after 30 minutes of SMA-SRACR followed by 60 minutes of reperfusion as well as the corresponding sham group. The microdialysis dialysate was analyzed for total nitric oxide (microM) and prostaglandin E2 (PGE2), 6-keto-PGF(1alpha) (PGI2 metabolite), and thromboxane B2 synthesis. The data are reported as percent change compared with the baseline time zero. The laser Doppler blood flow and microdialysis groups were treated with either saline carrier, N(omega)-nitro-L-arginine methyl ester hydrochloride (L-NAME) (30 mg/kg, nitric oxide synthesis inhibitor), L-arginine (400 mg/kg, nitric oxide precursor), superoxide dismutase (SOD, 10,000 U/kg, oxygen-derived free radical scavenger), L-NAME + SOD, or L-arginine + SOD. SOD was given 30 minutes before the reperfusion, and the other drugs were given 15 minutes before reperfusion. The renal cortex and medulla were separated and analyzed for inducible nitric oxide synthase (iNOS), cyclooxygenase-2, prostacyclin synthase, and PGE2 synthase content by Western blot. Superior mesenteric artery-SRACR caused a marked decrease in medullary and cortical blood flow with a concomitant decrease in endogenous medullary and cortical nitric oxide synthesis. These changes were further accentuated by L-NAME treatment but restored toward sham levels by L-arginine treatment after SMA-SRACR. The kidney appeared to compensate for these changes by increasing cortical and medullary PGE2 synthesis and release. SOD treatment restored renal cortical and medullary nitric oxide synthesis and blood flow in the ischemia-reperfusion group and in the ischemia-reperfusion group treated with L-NAME. These data show that nitric oxide is important in maintaining renal cortical and medullary blood flow and nitric oxide synthesis. These data also support the hypothesis that the loss of medullary and cortical microvascular blood flow following SRACR is due in part to oxygen-derived free radical downregulation of endogenous medullary and cortical nitric oxide synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.