Abstract

The loss of renal function continues to be a frequent complication of the iodinated contrast agents used to perform diagnostic angiography and endovascular procedures. This study examined the hypothesis that contrast-induced renal injury is partly due to a decrease in cortical and medullary microvascular blood flow after the downregulation of endogenous renal cortical and medullary nitric oxide (NO) synthesis. Anesthetized male Sprague-Dawley rats (300 g) had microdialysis probes or laser Doppler fibers inserted into the renal cortex to a depth of 2 mm and into the renal medulla to a depth of 4 mm. Laser Doppler blood flow was continuously monitored, and the microdialysis probes were connected to a syringe pump and perfused in vivo at 3 muL/min with lactated Ringer's solution. Dialysate fluid was collected at time zero (basal) and 60 minutes after infusion of either saline or Conray 400 (6 mL/kg). Both groups were treated with saline carrier, N(omega)-nitro-L-arginine methyl ester hydrochloride (L-NAME, 30 mg/kg), L-arginine (400 mg/kg), or superoxide dismutase (10,000 U/kg), an oxygen-derived free radical scavenger. Dialysate was analyzed for total NO and eicosanoid synthesis. The renal cortex and medulla were analyzed for inducible NO synthase (iNOS), cyclooxygenase-2 (COX2), prostacyclin synthase, and prostaglandin E(2) (PGE(2)) synthase content by Western blot analysis. Conray caused a marked decrease in cortical and medullary blood flow with a concomitant decrease in endogenous cortical NO, PGE(2), and medullary NO synthesis. The addition of L-NAME to the Conray further decreased cortical and medullary blood flow and NO synthesis, which were restored toward control by L-arginine. Neither L-NAME nor L-arginine (added to the Conray) altered cortical or medullary eicosanoids release. Medullary PGE(2) synthesis decreased when superoxide dismutase was added to the Conray treatment, suggesting that oxygen-derived free radicals had a protective role in maintaining endogenous medullary PGE(2) synthesis after Conray treatment. Conray did not significantly alter iNOS, COX-2, prostacyclin synthase, or PGE(2) synthase content. These findings suggest that the downregulation of renal cortical and medullary NO synthesis contributes to the contrast-induced loss of renal cortical and medullary microvascular blood flow. Preservation of normal levels of renal cortical and medullary NO synthesis may help prevent or lessen contrast-induced renal vasoconstriction and lessen contrast-induced renal injury found after diagnostic and therapeutic endovascular procedures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call