Abstract

This study investigates the effects of single-step and two-step annealing processes on the formation of oxygen precipitates and their impact on metal impurity gettering in gallium-doped monocrystalline silicon. The research focuses on the competitive relationship between internal gettering by oxygen precipitates and external gettering through phosphorus diffusion. Experimental results show that two-step annealing generates larger and more abundant oxygen precipitates, enhancing the internal gettering effect and reducing the recovery of minority carrier lifetime after phosphorus gettering. Despite this, phosphorus diffusion gettering remains effective in improving minority carrier lifetime, although the degree of improvement depends on the size and quantity of oxygen precipitates. These findings offer valuable insights for optimizing the fabrication process of silicon-based solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.