Abstract

Composite ceramic membranes based on the ionic conducting Tm-stabilized δ-Bi2O3 (BTM) and the electronic conducting (La0.8Sr0.2)0.99MnO3-δ (LSM) exhibit among the highest oxygen flux values reported for Bi2O3-based membranes. Here, we use pulse-response isotope exchange (PIE) and oxygen flux measurements to elaborate on limiting factors for the oxygen permeation in BTM - 40-70 vol% LSM composites. Once both phases percolate, between 30 and 50 vol% BTM, the flux is essentially independent of the BTM/LSM volume ratio. The oxygen permeability is under mixed diffusion- and surface control, gradually becoming more bulk-limited with increasing temperature. The oxygen exchange coefficients of BTM-LSM are significantly higher than its constituent phases, revealing that a cooperative surface exchange mechanism enhances the kinetics. Some of the Tm was substituted with Pr to introduce electronic conductivity in BTM. (Bi0.8Tm0.15Pr0.05)2O3-δ (BTP) exhibits higher surface exchange coefficients compared to BTM, but the oxygen flux remains one order of magnitude lower than that of percolating BTM-LSM composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.