Abstract

Light elements play a crucial role on the microstructure and properties of conventional alloys and steels. Oxygen is one of the light elements which is inevitably introduced into nanocrystalline alloys during manufacturing. Here, we report that severe plastic deformation can fragment the oxides formed in powder processing and eventually cause oxygen dissolution in the matrix. A comparative investigation on Cu-Fe nanocrystalline alloys generated from different initial materials, blended powders and arc-melted bulk materials which have different oxygen contents, reveals that fragmented oxides at grain boundaries effectively decrease the grain boundary mobility, markedly facilitating grain refinement. In contrast, those oxygen atoms dissolved as interstitials in the Cu-Fe matrix lead to lattice expansion and significant decrease of stacking fault energy locally as validated by density functional theory. Such oxygen-mediated microstructure gives rise to enhanced strength and superior structural stability. The remarkable tailoring effect of oxygen can be employed to engineer nanocrystalline materials with desired properties for different applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.