Abstract
Spartina alterniflora has been reported to lose significant amounts of oxygen to its rhizosphere with potentially important effects on salt-marsh biogeochemical cycling and plant productivity. The potential significance of this oxidative pathway was evaluated using laboratory split-chamber experiments to quantify oxygen loss from intact root systems under a wide variety of pre-treatment and incubation conditions including antibiotics to inhibit microbial respiration. The aerenchyma system of S. alterniflora was found to transport O2, N2, Ar, and CH4 from above-ground sources to its below-ground roots and rhizomes. While non-respiratory gases were observed to move from the lacunae to water bathing the root systems, net O2 loss did not occur; instead oxygen present outside of the roots/rhizomes was consumed. Net oxygen loss was found when resistance to gas transport was reduced in the lacunae-rhizosphere pathway by placing the root systems in a gas phase and when plant respiration was significantly reduced. Root system respiration appeared to be the major variable in the plant oxygen balance. When root and rhizome respiration was inhibited using poisons or lowered by cooling, the oxygen deficit was greatly reduced and oxygen loss was indicated. The effect of seasonal temperature changes on root system "oxygen deficit" presents a possible explanation as to why Spartina produces root systems with respiration rates that cannot be supported by gas transport. Overall, while oxygen loss from individual plant roots is likely, integrating measured root system oxygen loss with geochemical data indicates that the mass amount of oxygen lost from S. alterniflora root systems is small compared to the total oxygen balance of vegetated salt marsh sediments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.