Abstract

Global change drivers such as habitat fragmentation, species invasion, and climate warming can act synergistically upon native systems; however, global change drivers can be neutralized if they induce antagonistic interactions in ecological communities. Deadwood comprises a considerable portion of forest carbon, and it functions as refuge, nesting habitat and nutrient source for plant, animal and microbial communities. We predicted that thermophilic termites would increase wood decomposition with experimental warming and in forest edge habitat. Alternately, given that predatory ants also are thermophilic, they might limit termite-mediated decomposition regardless of warming. In addition, we predicted that a non-native, putative termite-specialist ant species would decrease termite activity, and consequently decomposition, when replacing native ants. We tested these hypotheses using experimental warming plots (~ 2.5°C above ambient) where termites, and their ant predators, have full access and vary in abundance at microscales. We found that termite activity was the strongest control on decomposition of field wood assays, with mass loss increasing 20% with each doubling of termite activity. However, both native and non-native ant abundance increased with experimental warming and, in turn, appeared to equally limit termite activity and, consequently, reduced wood decomposition rates. As a result, experimental warming had little net effect on the decomposition rates-likely because, although termite activity increased somewhat in warmed plots, ant abundances increased more than five times as much. Our results suggest that, in temperate southern U.S. forests, the negative top-down effects of predatory ants on termites outweighed the potential positive influences of warming on termite-driven wood decomposition rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.