Abstract

New laser-fluorination oxygen isotope data are presented for volcanic glasses and phenocrysts from Lau and North Fiji Basin lavas. The low oxygen blank of the technique allows accurate analysis of these often scarce igneous phases. δ 18O values of volcanic glass range from 5.53‰ to 6.06‰. Oxygen isotope ratios of ferromagnesian and plagioclase phenocrysts are lower and higher than their host glasses, respectively, and coexisting phases appear to represent oxygen isotope equilibrium at magmatic temperatures. Evolved lavas from the propagating and dying rift tips in the Central Lau Basin display significant 18O-enrichment with magmatic evolution due to FeTi-oxide crystallisation and require that precursor melts had relatively low δ 18O values immediately prior to oxide saturation. Development of these precursor melts from basaltic parents involved assimilation of hydrothermally altered sheeted dykes or gabbros in recently accreted oceanic crust accompanied by crystallisation of a plagioclase-rich assemblage. The stable isotope geochemistry and petrology of Central Lau Basin lavas constrain magmatic evolution to depths between 2.5 and 5 km beneath the seafloor. A dacite from Valu Fa Ridge is slightly 18O-enriched relative to Valu Fa basalts, consistent with crystallisation of a mineral assemblage similar to mid-ocean ridge basalts. 18O/ 16O ratios of Lau Basin basaltic glasses decrease with Mg Number; this observation could be reconciled with the assimilation and fractional crystallisation model proposed for initial differentiation of the evolved lavas. However, oxygen isotope data for Central Lau Basin basalts correlate positively with Ba/La while basaltic glasses from throughout the region display a negative correlation between δ 18O and Na 8.0 suggesting that recycling of subducted oxygen and/or mantle fertility may also exert an influence on 18O/ 16O of primary melts. Presently, the lack of quantitative control over oxygen isotope fractionation in basaltic systems prohibits resolution of these effects. Detailed investigation of less complex suites of lavas, employing the precision offered by laser fluorination, may provide new insights into the behaviour of oxygen at magmatic temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.