Abstract
The antioxidant enzyme Cu,Zn-superoxide dismutase (SOD1) has the distinction of being one of the most abundant disulfide-containing protein known in the eukaryotic cytosol; however, neither catalytic nor physiological roles for the conserved disulfide are known. Here we show that the disulfide status of Saccharomyces cerevisiae SOD1 significantly affects the monomer-dimer equilibrium, the interaction with the copper chaperone CCS, and the activity of the enzyme itself. Disulfide formation in SOD1 by O2 is slow but is greatly accelerated by the Cu-bound form of CCS (Cu-CCS) in vivo and in vitro even in the presence of excess reductants; once formed, this disulfide is kinetically stable. Biochemical assays reveal that Cu-CCS facilitates Cys oxidation and disulfide isomerization in the stepwise conversion of the immature form of the enzyme to the active state. The immature form of SOD1 is most susceptible to oxidative insult and to aggregation reminiscent of that observed in amyotrophic lateral sclerosis. Thus Cu-CCS mediation of correct disulfide formation in SOD1 is important for regulation of enzyme activity and for prevention of misfolding or aggregation.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have