Abstract
We have investigated the effect of gallium deposition and desorption cycles and ultrathin (15 Å) AlN layers on the oxygen impurity concentrations in homoepitaxial N-polar GaN layers. Secondary ion mass spectroscopy (SIMS) indicates that three Ga deposition and desorption cycles reduce the total oxygen by 70%–80%, while ten cycles reduces the total oxygen by more than 90%. We present a model of surface segregation and incorporation which accurately captures the distribution of oxygen in these layers. By fitting the model to the SIMS data, we are able to determine the fraction of an oxygen layer adsorbed on a GaN surface which segregates upon initiation of epitaxial GaN growth. Under the conditions investigated, we find this fraction to be 80%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.