Abstract

The electro-Fenton (EF) process generates H2O2 through the 2e- oxygen reduction reaction (ORR), which is subsequently activated to •OH by iron-based catalysts. To alleviate the potential risk of external Fe-based catalysts, along with metal dissolution in acidic or neutral environments, in this study we employed oxygen-doped carbon nanotubes (OCNT) as a bifunctional, metal-free cathode to establish a metal-free EF process for organic pollutant degradation. The results demonstrate that the metal-free electrode has excellent H2O2 accumulation (12 mg L−1 cm−1) and degrades sulfathiazole (STZ) with 97.05 % efficiency in 180 min with an explanation kinetic of 0.0189 min−1. For the first time, this enhancement came from the dual active site centers in OCNT: Ⅰ) -COOH and defects active sites were responsible for H2O2 production, Ⅱ) then -CO triggered H2O2 into •OH, avoiding the introduction of metal-based catalysts. These findings suggest that the EF system with in situ oxygen-doped cathodes have great potential for treating antibiotic wastewater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.