Abstract

Metal ions removal is inhibited in aqueous solution containing ethylenediaminetetraacetic acid (EDTA). In this study, the non-noble metals-based Co-N-doped MoO2 nanowires (Co-N-MoO2) were successfully synthesized using cyanamide and Co(Ac)2 as precursors by pyrolysis, then immobilized on carbon felt (CF), and firstly used as cathode to remove EDTA-Ni complex through oxygen reduction reaction (ORR) in electro-Fenton (EF) process. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) results indicated that a synergetic coupling effect of doping of N and Co induced structural modifications of MoO2 lattice, and produced more lattice defects. The electrochemical analysis results showed that the superior ORR electrochemical catalysis activities were obtained at pH = 3 with the lowest cathodic peak potentials (- 0.157V vs. Ag/AgCl), the highest electrochemical active surface area (EASA: 3.971mCcm-2), the extraordinarily high of the ring current (35.5μA) and high H2O2 yield (> 20%). Under the optimum conditions, about 68% of EDTA-Ni was removed with the Co-N-MoO2/CF as cathode after 120min with lower specific energy consumption (0.0226kWhmg-1 (DOC)) in EF system. Mechanism analysis indicated that the production of strong oxidizing property of hydroxyl radical (•OH) on the cathode played an important role in the removal of EDTA-Ni in the EF process, synergetic effect of cobalt and nitrogen co-doped could facilitate the high generation of H2O2, which greatly promote the formation of •OH. The EF system with Co-N-MoO2/CF cathode has a potential for breaking metal-complex with good stability, showing that this cathode is a candidate for application for applications in EAPOs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call