Abstract

The oxygen diffusion coefficient through hydrophobic cement-based materials fully immersed in water was determined by potentiostatic measurements on concrete and by the use of a diffusion cell on cement pastes and mortars. The obtained results show that very high oxygen diffusion occurs through cement paste, mortar and concrete made with hydrophobic admixture as opposed to negligible diffusion through the reference cement matrix without admixture. Moreover, the oxygen diffusion coefficients measured through hydrophobic cement matrices immersed in water were comparable with those reported in literature for unsaturated cement materials in air. These experimental results appear to confirm that oxygen dissolved in water directly diffuses as a gaseous phase through the empty pores of a hydrophobic cement matrix. This could explain the severe corrosion of steel reinforcement embedded in cracked hydrophobic concrete immersed in an aqueous chloride solution observed in a previous work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call