Abstract

Oxygen is introduced in germanium during crystal growth and processing and can lead to the formation of clusters that may impact the performance of devices. Therefore the understanding of its properties in germanium over a wide temperature range is important. Here we employ the so-called cBΩ model in which the defect Gibbs energy is proportional to the isothermal bulk modulus (B) and the mean volume per atom (Ω) to describe oxygen diffusion in germanium. The model describes oxygen diffusion in germanium in the temperature range considered and the derived results are discussed in view of the available experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.