Abstract
Monoclinic gallium oxide (β-Ga2O3) is an ultra-wide bandgap semiconductor with importance in various technological areas. We investigated oxygen tracer self-diffusion in (100) oriented β-Ga2O3 single crystals at high temperatures between 1200 °C and 1600 °C. Isotope enriched 18O2 gas was used as a tracer source. The isotope exchanged samples were analyzed by secondary ion mass spectrometry in depth profile mode. The diffusivities can be described by the Arrhenius law with an activation enthalpy of (3.2 ± 0.4) eV. Possible diffusion mechanisms are discussed using defect equilibria and density functional theory calculations as found in the literature. As a result, oxygen interstitials are more likely than vacancies as defects governing diffusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.