Abstract

A photocontrolled reversible addition-fragmentation chain transfer (RAFT) process is developed by initiating polymerization through a 1,3-diaminopropane-triethylborane (DAPTB)-diphenyl iodonium salt (Ph2 I+ ) complex (DAPTB/Ph2 I+ ) under ambient temperature and atmospheric conditions. Upon demand, this air-stable DAPTB/Ph2 I+ complex is photolyzed to liberate a reactive triethylborane that consumes atmospheric oxygen and generates ethyl radicals, which initiate and mediate RAFT polymerization. Controlled RAFT polymerization is thus achieved without any prior deoxygenation using a novel RAFT chain transfer agent, BP-FSBC, which contains both benzophenone and sulfonyl fluoride moieties. Furthermore, the kinetics of polymerization reveal that the reaction process is rapid, and well-defined polymers are produced by a 61% conversion of 2-hydroxyethyl acrylate (HEA) within 7 min and 77% conversion of N,N-dimethylacrylamide (DMA) within 10.5 min. The temporal and spatial control of this photopolymerization is also demonstrated by an "on/off" switch of UV irradiation and a painting-on-a-surface approach, respectively. In addition, active chain ends are demonstrated by preparing block copolymers by chain extension and click sulfur(VI)-fluoride exchange postreaction using RAFT-derived macrochain transfer agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call