Abstract

The intrinsic positive-end-expiratory pressure (PEEPi) increases the inspiratory load, the cost of breathing and thus oxygen consumption (V(O2)). It has been shown that applying an extrinsic positive-end-expiratory pressure (PEEPe) reduces the inspiratory threshold load but the optimal PEEPe level is still in debate. We hypothesize that the best level of PEEPe could induce a decrease in V(O2) by reducing the V(O2) demands from PEEPi. Nine mechanically ventilated COPD patients were included. The level of PEEPe was determined in accordance with the static PEEPi. V(O2) was measured using an automatic gas analyser during synchronized intermittent mandatory ventilation (SIMV): without PEEPe, with a PEEPe equal to 50% of static PEEPi and with a PEEPe equal to 100% of static PEEPi. Static PEEPi appeared to be significantly correlated with the degree of airflow obstruction (FEV1) (P<0.05). Applying a PEEPe equal to static PEEPi resulted in a significant decrease in V(O2) (P<0.05) whereas the change in V(O2) proved to be unpredictable for a PEEPe level of 50% of static PEEPi. In conclusion, V(O2) decreases progressively when increasing PEEPe up to a level equal to 100% of static PEEPi. Thus, in mechanically ventilated COPD patients with a FEV1 < or = 1000 ml, applying a PEEPe of 5 cmH2O should be recommended.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.