Abstract

Cu(110) and the vicinal Cu(19 19 1) surfaces were characterized by recording maps of the reciprocal space by means of spot profile analysis low-energy electron diffraction (SPA-LEED). For both surfaces, kinematic simulations were performed to get insight into the main features of the experimental data. Furthermore, it is shown that chemisorption of oxygen and subsequent annealing lead to the formation of a Cu-CuO stripe phase and induce faceting of the Cu(19 19 1) surface. The evolution from the clean Cu(19 19 1) surface to the coexistence of the (110) and (111) facets with increasing oxygen exposure was characterized by SPA-LEED.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.