Abstract

Growing high quality graphene films directly on glass by chemical vapor deposition (CVD) meets a growing demand for constructing high-performance electronic and optoelectronic devices. However, the graphene synthesized by prevailing methodologies is normally of polycrystalline nature with high nucleation density and limited domain size, which significantly handicaps its overall properties and device performances. Herein, we report an oxygen-assisted CVD strategy to allow the direct synthesis of 6-inch-scale graphene glass harvesting markedly increased graphene domain size (from 0.2 to 1.8 µm). Significantly, as-produced graphene glass attains record high electrical conductivity (realizing a sheet resistance of 900 Ω·sq−1 at a visible-light transmittance of 92%) amongst the state-of-the-art counterparts, readily serving as transparent electrodes for fabricating high-performance optical filter devices. This work might open a new avenue for the scalable production and application of emerging graphene glass materials with high quality and low cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.