Abstract
Hydrothermal reactions of NiII, di-4-pyridylamine (dpa) and the appropriate oxide yield materials of the NiII–organodiamine–EO42– family. Specifically, reaction of NiCl2·6H2O, dpa, and MoO3 in water at 120 °C yielded [Ni(dpa)2(MoO4)] 1, while the reaction of NiSO4·6H2O and dpa in water at 120 °C gave [Ni(dpa)(SO4)(H2O)]·2H2O 2. The structures reveal the dramatic influence of the anion identity and ligation modes in the {Ni(dpa)n}n2n+ substructure. The structure of 1 is constructed from two motifs, two-dimensional {Ni(dpa)}n2n+ sheets and one-dimensional {NiMoO4}n chains, to produce a three-dimensional covalently linked framework. In contrast, the {Ni(dpa)}n2n+ substructure of 2 is three-dimensional, with co-ordinated SO42– and aqua ligands projecting into channels formed by the {Ni(dpa)}n2n+ framework. The void is reduced through the common characteristic of interpenetration, such that the structure of 2 exhibits two independent three-dimensional frameworks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Chemical Society, Dalton Transactions
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.