Abstract

Inhibitory effect of ark shell (Scapharca subcrenata (Lischke, 1869)) proteolytic hydrolysates (ASHs) on oxidized low-density lipoprotein (oxLDL)-induced macrophage foam cell formation was investigated. Two types of ASHs were prepared by Alcalase® and pepsin, ASAH (ark shell-Alcalase® hydrolysates), and ASPH (ark shell-pepsin hydrolysate). Oil Red O staining results showed that ASPH suppressed foam cell formation and lipid accumulation more than ASAH in oxLDL-induced foam cell formation of RAW264.7 macrophages. ASPH reduced the levels of total cholesterol, cholesterol ester, and free cholesterol in oxLDL-treated RAW264.7 macrophages. It was found that ASPH increased cholesterol efflux and decreased cholesterol influx rate. In this regard, protein expressions of CD36 and scavenger receptor class A1 (SR-A1) for cholesterol influx and ATP-binding cassette transporter A1 and G1 (ABCA1 and ABCG1) for cholesterol efflux were investigated. ASPH treatment resulted in an increase of ABCA1 and ABCG1 expression but downregulated CD36 and SR-A1 expression. Furthermore, ASPH suppressed production of proinflammatory cytokines, including tumor necrosis factor-α and interleukin-6 and -1β, through regulating nuclear factor-kappa B (NF-κB) in oxLDL-induced foam cell formation of RAW264.7 macrophages. Taken together, our data indicate that ASPH might be a useful ingredient in functional foods for ameliorating atherosclerosis by preventing foam cell formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call