Abstract
Elevated levels of oxidized proteins are reported in diseased tissue from age-related pathologies such as atherosclerosis, neurodegenerative disorders, and cataract. Unlike the precise mechanisms that exist for the repair of nucleic acids, lipids, and carbohydrates, the primary pathway for the repair of oxidized proteins is complete catabolism to their constitutive amino acids. This process can be inefficient as is evidenced by their accumulation. It is generally considered that damaged proteins are degraded by the proteasome; however, this is only true for mildly oxidized proteins, because substrates must be unfolded to enter the narrow catalytic core. Rather, evidence suggests that moderately or heavily oxidized proteins are endocytosed and enter the endosomal/lysosomal system, indicating co-operation between the proteasomes and the lysosomes. Heavily modified substrates are incompletely degraded and accumulate within the lysosomal compartments resulting in the formation of lipofuscin-like, autofluorescent aggregates. Accumulation eventually results in impaired turnover of large organelles such as proteasomes and mitochondria, lysosomal destablization, leakage of proteases into the cytosol and apoptosis. In this review, we summarize reports published since our last assessments of the field of oxidized protein degradation including a role for modified proteins in the induction of apoptosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.