Abstract

Three-dimensional (3D) carbon nitride (C3 N4 )-based materials show excellent performance in a wide range of applications because of their suitable band structures. To realize the great promise of two-dimensional (2D) allotropes of various 3D materials, it is highly important to develop routes for the production of 2D C3 N4 materials, which are one-atom thick, in order to understand their intrinsic properties and identify their possible applications. In this work, water-dispersible, atomically thin, and small carbon nitride nanodots were produced using the chemical oxidation of graphitic C3 N4 . Various analyses, including X-ray diffraction, X-ray photoelectron, Fourier-transform infrared spectroscopy, and combustion-based elemental analysis, and thermogravimetric analysis, confirmed the production of 3D oxidized C3 N4 materials. The 2D C3 N4 nanodots were successfully exfoliated as individual single layers; their lateral dimension was several tens of nanometers. They showed strong photoluminescence in the visible region as well as excellent performances as cell-imaging probes in an in vitro study using confocal fluorescence microscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call