Abstract

AbstractThe catalytic acceptorless dehydrogenative oxidation of biosourced alcohols into carboxylic acid salts was achieved using earth‐abundant Fe and Mn complexes that feature aliphatic PNP pincer ligands in good to excellent yields. The Fe derivatives were characterized by using 57Fe NMR spectroscopy. Mn pincer catalysts are catalytically more efficient than their Fe counterparts thanks to their robustness under basic conditions. Attempts to generate aldehydes from alcohols were not successful using the Fe and Mn species, but a commercially available Ru analogue achieves this transformation selectively under very mild conditions in the presence of a large excess of acetone as a hydrogen acceptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.