Abstract

Fenpyroximate (FEN) is an acaricide that inhibits mitochondrial electron transport at the NADH-coenzyme Q oxidoreductase (complex I). The present study was designed to investigate the molecular mechanisms underling FEN toxicity on cultured human colon carcinoma cells (HCT116). Our data showed that FEN induced HCT116 cell mortality in a concentration dependent manner. FEN arrested cell cycle in G0/G1 phase and increased DNA damage as assessed by comet assay. Induction of apoptosis was confirmed in HCT116 cells exposed to FEN by AO-EB staining and Annexin V-FITC/PI double staining assay. Moreover, FEN induced a loss in mitochondrial membrane potential (MMP), increased p53 and Bax mRNA expression and decreased bcl2 mRNA level. An increase in caspase 9 and caspase 3 activities was also detected. All toghether, these data suggest that FEN induce apoptosis in HCT116 cells via mitochondrial pathway. To check the implication of oxidative stress in FEN-induced cell toxicity, we examined the oxidative stress statue in HCT116 cells exposed to FEN and we tested the effect of a powerful antioxidant, N-acetylcystein (NAC), on FEN-caused toxicity. It was observed that FEN enhanced ROS generation and MDA levels and disturbed SOD and CAT activities. Besides, cell treatment with NAC significantly protected cells from mortality, DNA damage, loss of MMP, and caspase 3 activity induced by FEN. To the best of our knowledge, this is the first study showing that FEN induced mitochondrial apoptosis via ROS generation and oxidative stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.