Abstract

Neonatal brain injury renders the developing brain vulnerable to oxidative stress, leading to cognitive deficit. However, oxidative stress-induced damage to hippocampal circuits and the mechanisms underlying long-term changes in memory and learning are poorly understood. We used high oxygen tension or hyperoxia (HO) in neonatal mice of both sexes to investigate the role of oxidative stress in hippocampal damage. Perinatal HO induces reactive oxygen species and cell death, together with reduced interneuron maturation, inhibitory postsynaptic currents, and dentate progenitor proliferation. Postinjury interneuron stimulation surprisingly improved inhibitory activity and memory tasks, indicating reversibility. With decreased hippocampal levels of Wnt signaling components and somatostatin, HO aberrantly activated glycogen synthase kinase 3 β activity. Pharmacological inhibition or ablation of interneuron glycogen synthase kinase 3 β during HO challenge restored progenitor cell proliferation, interneuron development, inhibitory/excitatory balance, as well as hippocampal-dependent behavior. Biochemical targeting of interneuron function may benefit learning deficits caused by oxidative damage.SIGNIFICANCE STATEMENT Premature infants are especially vulnerable to oxidative stress, as their antioxidant defenses are underdeveloped. Indeed, high oxygen tension is associated with poor neurologic outcomes. Because of its sustained postnatal development and role in learning and memory, the hippocampus is especially vulnerable to oxidative damage in premature infants. However, the role of oxidative stress in the developing hippocampus has yet to be explored. With ever-rising rates of neonatal brain injury and no universally viable approach to maximize functional recovery, a better understanding of the mechanisms underlying neonatal brain injury is needed. Addressing this need, this study uses perinatal hyperoxia to study cognitive deficits, pathophysiology, and molecular mechanisms of oxidative damage in the developing hippocampus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.