Abstract

We have reported that smoking during pregnancy is associated with deficit in neonatal central chemoreception. However, the underlying mechanism is not well clarified. In this study, we developed a rat model of maternal cigarette smoke (CS) exposure. Pregnant rats were exposed to CS during gestational day 1−20. Offspring were studied on postnatal day 2. Reactive oxygen species (ROS) content and expressions of antioxidant proteins in retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) were examined by fluorogenic dye MitoSOX™ Red and Western blotting, respectively. The response of hypoglossal rootlets discharge to acidification was also detected with micro-injection of H2O2 into RTN/pFRG of offspring brainstem slices in vitro. Results showed that maternal CS exposure led to an increase in ROS production, and brought about decreases in mitochondrial superoxide dismutase and Kelch-like ECH-associated protein-1, and an increase in NF-E2-related factor 2 in offspring RTN/pFRG. Catalase and glutathione reductase expressions were not significantly changed. Moreover, oxidative stress induced by micro-injection of H2O2 into RTN/pFRG in vitro inhibited the discharge response of hypoglossal rootlets to acidification. These findings suggest that maternal CS exposure results in oxidative stress in RTN/pFRG of rat offspring, which might play a role in the impairment of central chemoreception.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call