Abstract
The role of plant antioxidant systems in water stress tolerance was studied in three contrasting wheat genotypes. Water stress imposed at different stages after anthesis resulted in an increase in lipid peroxidation and a decrease in membrane stability and chlorophyll and carotenoid contents. The antioxidant enzymes ascorbate peroxidase, glutathione reductase and non-specific peroxidase also increased significantly under water stress. Genotype PBW 175, which had highest ascorbate peroxidase, glutathione reductase and peroxidase activity, had the lowest lipid peroxidation (malondialdehyde content) and highest membrane stability and contents of chlorophyll and carotenoids under water stress, while the susceptible genotype WH 542 exhibited the lowest antioxidant enzyme activity, membrane stability and contents of chlorophyll and carotenoids and the highest lipid peroxidation. Genotype HD 2402 showed intermediate behaviour. It seems that drought tolerance of PBW 175, as represented by higher membrane stability and chlorophyll and carotenoid contents and lower lipid peroxidation, is related to its higher antioxidant enzyme activity.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have