Abstract

Oxidant stress is thought to play a role in the pathogenesis of many gastric disorders. We have recently reported that histidine decarboxylase (HDC) promoter activity is stimulated by gastrin through a protein kinase C- and extracellular signal-regulating kinase (ERK)-dependent pathway in gastric cancer (AGS-B) cells, and this transcriptional response is mediated by a downstream cis-acting element, the gastrin response element (GAS-RE). To study the mechanism through which oxidant stress affects gastric cells, we examined the effects of hydrogen peroxide (H2O2) on HDC promoter activity and intracellular signaling in AGS-B cells. H2O2 (10 mM) specifically activated the HDC promoter 10-12-fold, and this activation was blocked by both mannitol and N-acetylcysteine. Hydrogen peroxide treatment of AGS-B cells increased the phosphorylation and kinase activity of ERK-1 and ERK-2, but did not affect Jun kinase tyrosine phosphorylation or kinase activity. In addition, treatment of AGS-B cells with H2O2 resulted in increased c-fos/c-jun mRNA expression and AP-1 activity, and also led to increased phosphorylation of epidermal growth factor receptor (EGFR) and Shc. H2O2-dependent stimulation of HDC promoter activity was completely inhibited by kinase-deficient ERKs, dominant-negative (N17 and N15) Ras, and dominant-negative Raf, and partially blocked by a dominant-negative EGFR mutant. In contrast, protein kinase C blockade did not inhibit H2O2-dependent induction of the HDC promoter. Finally, deletion analysis demonstrated that the H2O2 response element could be mapped to the GAS-RE (nucleotides 2 to 24) of the basal HDC promoter. Overall, these studies suggest that oxidant stress activates the HDC promoter through the GAS-RE, and through an Ras-, Raf-, and ERK-dependent pathway at least partially involving the EGFR.

Highlights

  • § Supported by Grant DFG HO 1288/2-1 from the German Research Council and by a grant from the Forschungsschwerpunkt Molekulare Endokrinologie, Universitatsklinikum Benjamin Franklin

  • We have recently reported that histidine decarboxylase (HDC) promoter activity is stimulated by gastrin through a protein kinase C- and extracellular signal-regulating kinase (ERK)-dependent pathway in gastric cancer (AGS-B) cells, and this transcriptional response is mediated by a downstream cis-acting element, the gastrin response element (GAS-RE)

  • Stimulation by 10 mM H2O2 resulted in a measurable increase in HDC promoter activity as early as 3 h post-stimulation, with a maximal increase seen at 5–7 h after treatment (Fig. 1B)

Read more

Summary

Introduction

§ Supported by Grant DFG HO 1288/2-1 from the German Research Council and by a grant from the Forschungsschwerpunkt Molekulare Endokrinologie, Universitatsklinikum Benjamin Franklin. We have recently reported that histidine decarboxylase (HDC) promoter activity is stimulated by gastrin through a protein kinase C- and extracellular signal-regulating kinase (ERK)-dependent pathway in gastric cancer (AGS-B) cells, and this transcriptional response is mediated by a downstream cis-acting element, the gastrin response element (GAS-RE).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.