Abstract

This study aimed to investigate the application of isothermal calorimetry as technique for monitoring microparticles oxidation produced by particles from gas saturation solution (PGSS) technique. Microparticles were obtained by mixing linseed oil (9.1 g/100 g) with glycerol stearate (90.9 g/100 g). The process was carried out at 10 MPa, 55 °C for 30 min. To enhance microparticles oxidative stability, β-carotene was also added to the formulation (0.4 up to 1.6 mg/g of oil). The results showed that the fatty acid profile of the oil did not change after the encapsulation process. From the isothermal calorimetry traces, it was possible to determine the induction time (τIC) and the rates of oxidation during the inhibited (Rinh) and uninhibited (Runi) period. The microencapsulation by PGSS significantly (p < 0.05) increased τIC values of microparticles compared to the bulk oil, which resulted equal to 32 ± 1 × 104 s and 10.2 ± 2 × 104 s, respectively. On the other side, Rinh significantly decreased confirming the higher microparticles oxidative stability. β-carotene addition enhanced the oxidative stability proportionally to the concentration of the added antioxidant. At the end of the oxidation, the 3-OH-beta-apo-11-carotenal and the 3-OH-beta-apo-carotenone compounds derived from β-carotene degradation were detected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.