Abstract

Bovine lens aldose reductase (ALR2) is inactivated by copper ion [Cu(II)] through an oxygen-independent oxidative modification process. A stoichiometry of 2 equiv of Cu(II)/enzyme mol is required to induce inactivation. While metal chelators such as EDTA or o-phenantroline prevent but do not reverse the ALR2 inactivation, DTT allows the enzyme activity to be rescued by inducing the recovery of the native enzyme form. The inactive enzyme form is characterized by the presence of 2 equiv of bound copper, at least one of which present as Cu(I), and by the presence of two lesser equivalents, with respect to the native enzyme, of reduced thiol residues. Data are presented which indicate that the Cu-induced protein modification responsible for the inactivation of ALR2 is the generation on the enzyme of an intramolecular disulfide bond. GSH significantly interferes with the Cu-dependent inactivation of ALR2 and induces, through its oxidation to GSSG, the generation of an enzyme form linked to a glutathionyl residue by a disulfide bond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.