Abstract

Oxidative damage to the endoplasmic reticulum (ER) could be involved in ischemic neuronal cell death because this organelle is susceptible to reactive oxygen species. Using wild-type mice and copper/zinc-superoxide dismutase (SOD1) transgenic mice, we induced focal cerebral ischemia and compared neuronal degeneration and ER stress, that is, phosphorylation of eukaryotic initiation factor 2α (eIF2α) and RNA-dependent protein kinase-like ER eIF2α kinase (PERK). We found that neurons with severe and prolonged phosphorylation of eIF2α and PERK underwent later degeneration, and that this was partially prevented by SOD1 overexpression. Signals for superoxide production and phospho-PERK were colocalized, which further indicates a pivotal role for superoxide in ER damage. We investigated the molecular mechanisms of oxidative ER stress and found that detachment of glucose-regulated protein 78 from PERK was the key step. We conclude that ER damage is involved in oxidative neuronal injury in the brain after ischemia/reperfusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.