Abstract

The endoplasmic reticulum (ER), which plays important roles in apoptosis, is susceptible to oxidative stress. Because reactive oxygen species (ROS) are robustly produced in the ischemic brain, ER damage by ROS may be implicated in ischemic neuronal cell death. We induced global brain ischemia on wild-type and copper/zinc superoxide dismutase (SOD1) transgenic rats and compared ER stress and neuronal damage. Phosphorylated forms of eukaryotic initiation factor 2 alpha (eIF2 alpha) and RNA-dependent protein kinase-like ER eIF2 alpha kinase (PERK), both of which play active roles in apoptosis, were increased in hippocampal CA1 neurons after ischemia but to a lesser degree in the transgenic animals. This finding, together with the finding that the transgenic animals showed decreased neuronal degeneration, indicates that oxidative ER damage is involved in ischemic neuronal cell death. To elucidate the mechanisms of ER damage by ROS, we analyzed glucose-regulated protein 78 (GRP78) binding with PERK and oxidative ER protein modification. The proteins were oxidatively modified and stagnated in the ER lumen, and GRP78 was detached from PERK by ischemia, all of which were attenuated by SOD1 overexpression. We propose that ROS attack and modify ER proteins and elicit ER stress response, which results in neuronal cell death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.