Abstract

Chrysotile accounts for some 90% to 95% of all the asbestos used worldwide. Scientific evidences have shown that asbestos (including chrysotile) exposure is associated with increased rates of lung cancer, asbestosis, and mesothelioma. However, molecular mechanisms underlying the toxicity effects of chrysotile are not clear. This study evaluated the oxidative stress in chronic lung toxicity caused by the intratracheal instillation (IT) of four kinds China representative chrysotile once a month for 12months in Wistar rats. These results indicated that chrysotile exposure led to an obvious increase in lung mass and slowed the growth of body mass. Inflammation and fibrosis were observed by hematoxylin-eosin (HE) staining. Exposure to chrysotile significantly increased the accumulation of reactive oxygen species (ROS) and the level of lipid peroxidation and decreased antioxidant capacity in lung tissues. Furthermore, 1-6-month chrysotile exposure activated heme oxygenase-1 (HO-1) and heat shock protein 70 (HSP70) expression, whereas 12-month exposure caused significant decreases of two-factor expression levels in XK and MN groups when compared to negative control group. Therefore, our results suggested that chronic chrysotile pulmonary injury in Wistar rats is triggered by oxidative damage. Meanwhile, the oxidative damage of MN and XK was stronger than that of SSX and AKS, and the difference of oxidative damage in four chrysotile could have been brought by its properties, morphology, chemical composition, and particle size. With all the above mentioned in view, we hope that the revealed data in the experiment could contribute to the progress of further researches on the toxicity and mechanism of chrysotile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call