Abstract

In this study, lanthanum (La)-based magnetic biopolymers were synthesized, and the first adsorption study was conducted on the removal of brilliant green dye from aqueous water with these biopolymers. For the adsorption study, adsorption parameters were investigatedandthe ideal adsorption conditions determined for the removal of brilliant green dye from aqueous solutions are pH 11, t 60min, m 10mg, C0 25mg/L, T 298K. It was determined that the adsorption process was compatible with the single-layer Langmuir isotherm, and maximum adsorption capacity obtained according to the Langmuir isotherm was calculated as 256.41mg/g. The adsorption process was found to be in accordance with the pseudo-second-order, and the adsorption process was explained by intra-particle diffusion. According to studies of adsorption thermodynamics, it has been established that the nature of the adsorption reaction is spontaneous, and this process is endothermic and has increasing randomness. Moreover, the reusability of magnetic lanthanum/alginate (La/Alg) biopolymers was investigated, and it was determined that the biopolymers could be used successfully. In summary, brilliant green dye has been successfully removed with simple, low-cost, environmentally friendly, and easily obtained magnetic La/Alg biopolymers. It can be stated that even low amounts of these biopolymers can be effective in the treatment of highly concentrated dye wastewaters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call