Abstract

Hydrotalcite or Mg-Al LDHs were synthesized by co-precipitation method. The Mg-Al mixed oxide was then derived by calcination of hydrotalcite at 450°C. The metal modified catalysts (Mo/Mg-Al and V/Mg-Al) were prepared by incipient wetness impregnation method. The obtained catalysts were characterized by several useful techniques and tested the reactivity for dehydrogenation and oxidative dehydrogenation of ethanol (gas-phase) to produce acetaldehyde. The catalytic reactions were performed at temperature range from 200 to 400°C for both non-oxidative and oxidative atmospheres. The results showed that the vanadium-modified hydrotalcite (V/Mg-Al) exhibited the highest ethanol conversion (34.3%) and acetaldehyde yield (15.5%) at 400℃ in the non-oxidative atmosphere. For the oxidative dehydrogenation of ethanol, the V/Mg-Al catalyst showed the highest activity at 400°C giving the ethanol conversion and acetaldehyde yield of 73.7% and 29.5%, respectively. This result probably related to the highest base density of V/Mg-Al catalyst (6.13 µmol CO2/m2) measured by CO2-TPD. The catalytic activity of Mg-Al catalyst and metal modified catalyst slightly decreased upon time-on-stream test for 10 h on oxidative dehydrogenation of ethanol due to carbon deposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call