Abstract

AbstractThermal stabilization of polyacrylonitrile (PAN) fibers is an indispensable process in the manufacture of carbon fibers. The effects of acidic comonomers on the thermal properties of PAN have attracted much attention because of their importance in the fibers spinning and heat treatment process. In this study, oxidative and nonoxidative atmospheres are adopted in differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) test to disclose the key effects of oxygen on the thermal properties of PAN/itaconic acid (IA) polymers. The DSC results under oxidative atmosphere are consistence to the reports by previous researchers: the exothermic curves of copolymers containing 0.6 wt % and 1.0 wt % IA exhibit lower initiation temperature and more broaden shapes than that of PAN homopolymer, indicating that IA facilitates both cyclization and oxidation reactions. However, copolymers containing the same content of IA shows no apparent improving effect on the thermal properties under inert atmosphere, which has not been mentioned in the published literature. TGA indicates that oxygen remarkably increases the thermal stability of AN/IA copolymers structure, and will bring high carbon yield in the eventual carbon fibers. The influential mechanisms of oxidative and nonoxidative atmospheres on thermal stabilization reactions of PAN were discussed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call